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ABSTRACT

t t 7 L/7

Lambert's equations are stated and discussed for elliptical, hyper-

bolic, and parabolic trajectories. Numerical results are obtained for

Earth-to-Venus and Earth-to-Mars free-flight transfers, with the

assumptions of the two-body (Sun-spacecraft) approximation and

constant planetary radii. Straightforward methods, to determine which

forms of Lambert's equations are valid for a few specific problems,

are presented.

I. INTRODUCTION

Suppose a body under the influence of a central gravi-

tational force is observed to travel from a point P, on its

conic trajectory, to a point P2 in a time T. The time of

flight is related to other variables by Lambert's theorem,
which states:

The transfer time of a body moving between two

points on a conic trajectory is a function only of the

sum of the distances of the two points from the origin

of force, the linear distance between the points, and

the semimajor axis of the conic.

In mathematical terminology,

T = T (rl + r2, c, a) (1)

where rl, r:, and c are labeled in Fig. 1 and a is the semi-

major axis.

In most problems of interplanetary transfer, a space

mission is specified, that is, rl and rz are known. If rL and

r_ are known, c can be related to the heliocentric transfer

angle 0 by the law of cosines:

G2 = r] q- r _ -- 9,rl re cos 0 (2)

rz

F 0

/

Fig. 1. Geometry for Lambert's theorem
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Thus, Lambert's theorem can be stated for a specific

mission by

T = T (a, 0) (3)

Lambert's theorem can be expressed, of course, as a

functional equation, the form of which depends upon the

energy per unit mass of the body in motion and certain

geometrical conditions. The energy/mass (E) of the body

is given by

E = v - ± (4)
2 r

where

r = the distance from the origin of the central force

to the body

V = the velocity of the body at r

and

/, = the gravitational constant of the central force

The forms of Lambert's equations are first determined

by whether

E < 0 (elliptical conic)
or

E > 0 (hyperbolic conic)

or

E = 0 (parabolic conic)

If the body in question is considered to be a spacecraft

launched from the point P1 in the solar system, the three

energy conditions can be expressed alternatively as the
launch conditions

V1 < 2_r_

V1 = 2_

where V1 is the heliocentric velocity at rl.

II. LAMBERT'S EQUATIONS FOR ELLIPTICAL TRAJECTORIES

For a spacecraft launched from P1 on an elliptical tra-

jectory to P2, the launch condition is stated as

If the magnitudes of Vx and rx are known, the semimajor
axis a of the conic can be obtained from

- (5)E= 2a

The two possible ellipses that exist for given values of

rl, r_, 8, and a are given in Fig. 2. The proof that no
more than two ellipses exist is given in Appendix A.

Since clockwise and counterclockwise transfers exist on

both ellipses A and B, four different flight times and thus

four different forms of Lambert's equations exist for

given rl, r2, a, and _, where 0 < 0 < 2 ,r.

The four different forms of Lambert's equations may

be established by considering the area enclosed by the

Fig. 2. Geometry of elliptical orbits

2
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P2

Fig. 3. The chord-flight path area

chord c and the flight path of the moving body. (See

Fig. 3.)

i. For the counterclockwise trajectory along A, the

chord-flight path area shades neither F, the origin of

the central force, nor F;, the vacant focus of the

ellipse. For this trajectory and all elliptical trajec-

tories where tile area shades neither focus, Lambert's

equation has the form

P
T(a, 0)=r=_ [(a - sin a) - (fl - sin /3)]

(6)

where P is the period of the ellipse and is given by

and

cosa=l-L (0<a<,_)
a

S--C
cosfl=l---- (0_<__<_-)

a

The semiperimeter of the triangle FP_P2 is given by

where

EFor

rl + rz + C
$=

2

c = N/r_ + r _ - 2rl r._cos 0

a derivation of Eq. (6), see Ref. 1.]

2. For the clockwise trajectory along B, the chord-

flight path area shades only F, the origin of the cen-

tral force. For all such elliptical trajectories, Lam-

bert's equation has the form

T(a,O) =P - T = [(cr- sina) + (fl - sin//)]

(7)

3. For the counterclockwise trajectory along B, the

chord-flight path area shades only F _, the vacant

focus of the ellipse. For all such trajectories, Lain-

bert's equation has the form

T(a,O) = T = e - G [(a- sina) + (fl - sin//)]

(S)

4. For the clockwise trajectory along A, the chord-

flight path area shades both foci, F and F a . F o r

all such trajectories, Lambert's equation has the
form

P
T

(a, 0) = P - T = e - _ [(_ - sin ,_) -- (/3 - sin/3)]

(9)

The question of whether F is shaded or unshaded is

equivalent to whether 0 < ,r or 0 > ,r. The question of

whether F' is shaded or unshaded is equivalent to whether

0' < ,r or 0' > ,r. (See Fig. 3.) Thus the correct form of

Lambert's equation for elliptical trajectories is determined

from a know/edge of 0 and 0', as follows:

T (a, o) = T (0 < ,_, 0' < ,_)

T (a, 0) = T (0 < ,_, 0' > ,_)

T(a, 0) =e- T (0>%0'<,_)

T(a, 0) =P-T (0>_r, 0'>Tr)

There are two special cases that should be noted:

1. When the origin of the central force lies on the

chord c, 0 = _r; then

rl + r2 : C

In this ease, since

•_ ----- rl +r2

3
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then

so

Hence

and

s--c=O

fl=O

T,_ = (e- T)_ (F' unshaded) (10)

T, = (P -- T)_ (F shaded) (11)

and ellipses A and B become identical.

2. When the vacant focus of the transfer ellipse lies on

the chord c, 8' = _r. Since the sum of the distances

from a point on an ellipse to the two foci is a constant,

equal to 2a, it may be seen from Fig. 4 that

' :2arl + r_

and

' ----2arz -[- r 2

' W "----cr I 7'z

rl +rz+c s
4 2

Fig. 4. Geometry of a minimum semimajor axis ellipse

For given values of rl, r2, and O, (r] + rj ) has a mini-
mum value when F' lies on c. Hence the minimum

value that a can have is given by

If a,, is substituted into the T and T equations, Eq. (6)

and (8), then, for 0 < _r,

T (a_) -- T,, -- _,_ = P I_"- arc cos (1 s72c) -- _Jl -- (1

and, for 0 :> _r,

(P - T)_ = (P- T),,, = P - T,, (13)

c )51 (12)

III. LAMBERT'S EQUATIONS FOR HYPERBOLIC TRAJECTORIES

For a spacecraft launched from P1 on a hyperbolic

trajectory to P2, the launch condition is stated as

V1 > 2_

For given values of VI and rl, the value of a can be

determined. Since E is positive, a is negative.

The two possible hyperbolic trajectories that exist for

given values of rl, r,,, 0, and a are given in Fig. 5. The

proof that two and only two hyperbolas exist is given in

Appendix B.

Two different flight times and thus two different forms

of Lambert's equations exist in the hyperbolic case.

4

7! ili



JPL TECHNICAL REPORT NO. 32-521
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Fig. 5. Geometry of hyperbolic orbits

1. For hyperbola A, the chord-flight path area does

not shade F,, and 0 < _-. Lambert's equation for this

type of hyperbola has the form

T' = [(sinh a - a) - (sinh fl - fl)]

where

$

eosh a = 1 - -
a

$--c
cosh B = I

a

2. For hyperbola 13, the chord-flight path area shades
F, and 0 > r. Lambert's equation for this type of

hyperbola is

_' =%_ [(sinh a - a) + (sinhJ -/3)] (0 > 7t)

(15)

In the case where 0 = ,r, hyperbolas A and B become iden-

tical, so that

s = 0 and fl = 0

and Lambert's equation reduces to

-T; = T', = (sinh ,_ - _) (16)

IV. LAMBERT'S EQUATIONS FOR PARABOLIC TRAJECTORIES

For a spacecraft launched from P1 on a parabolic tra-

jectory to Pz, the launch condition is stated as

Since E = 0, a is infinite.

The two parabolic trajectories that exist for given values

of r,, r2, and 0 are given in Fig. 6. Parabolas A and B can

be considered the limiting case of ellipses A and B or

hyperbolas A and B as a --> oo or a --_ - _, respectively.

Likewise, Lambert's equations for the parabolic case can

A

Fig. 6. Geometry of parabolic orbits

5
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be derived, using L'Hopital's rule, from either the ellip-

tical or hyperbolic forms:

for 0 < _r,

T_ =lira T=limT'= _-_,-_-L s. - (s- c)3-]

(F unshaded) (17)

for 0 > ,_,

T_ =lira (P- T)=lim T'
a_ a_-_

= -f _ [s 3/_ + (s - c) _/'-'] (F shaded)

and, for 0 = ,r,

3X_

(18)

(19)

V. RESULTS

Lambert's equations have been programmed for the

IBM 1620 computer at the Jet Propulsion Laboratory for

computation of Earth-Venus and Earth-Mars trajectories.

The following conditions were assumed:

,

.

3.

The spacecraft moves from Earth, P_, to Venus or

Mars, P__,while under the gravitational influence of

the Sun only.

Planetary orbits are circular.

Constants for evaluating Lambert's equations:

r_ = 1 au

r_ = 0.723332 au (Venus)

= 1.523691 au (Mars)

t_ = 2.959122083 X 10-' au3
day _

Figures 7 through 10 are plots of T (a, 0) vs. a for various
values of 0 for Earth-Venus and Earth-Mars trajectories.

The (a,,,, T,,,) points of the various curves are connected

by a dashed line. Note that

T <T,_<T

and

(P- T)<(P- T,,,) <(P-- T)

for any given O.

Figures 11 and 12 are plots of T (a, 0) vs. 0 for con-

stant a for Earth-Venus flights and Earth-Mars flights,

respectively. Figure 18 illustrates the regions of the plots

in which the various T (a, O) forms are valid. In both

plots the horizontal dashed line cuts the curves at values

of 0 for which the particular a is a,,,. The intersection of

the two dashed lines is the Hohmann point. The value

of a at this point is the a,,. for 0 = 7r. For 0 - _r, since

and

then

or

r, + r_ + c
a m 4

2 + 2r_ r2c = ,,/q + r 2

2 + 2r_ rz4a., = r, + r,,."+ _/r_ + r 2

a,,, (Hohmann) -- r, + rz2 (20)

The curve marked a = o¢ is the parabolic limit of the

elliptical and hyperbolic orbits.

Figure 14 is a view of the T (a, 0) surface sketched in

rectangular Cartesian coordinates (T, a, 0) for elliptical

Earth-Venus trajectories.

6
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Vl. THE APPLICATION OF LAMBERT'S EQUATIONS TO TRANSFER PROBLEMS

Lambert's equations are very useful in solving transfer problems, especially when

the energy of the trajectory is either known or desired, and the eccentricity of the
orbit is unknown. In the three cases discussed here, as in most transfer problems,

the space mission is specified, that is, rl and r_ are considered known quantities.

When T (a, 0) is known and it is desired to find a or 0, the equations must be solved

backwards by an iteration procedure such as Newton's. The techniques of such

procedures will not be dealt with here, because of the abundance of such discus-

sions in the numerical analysis literature. In the cases discussed, straightforward

methods for determining which forms of Lambert's equations are valid, for a given

set of input parameters, are presented.

Case I:

Given: a, 0 (0 < 0 < 2r)

Find: T (a, 0)

If:a <0

If: 0 _< _-,

If: 0 > r,

If: a > 0

The solutions to Lambert's equations for given a and 0 correspond to flight times for

a hyperbola, an ellipse, or two ellipses. Under certain conditions, no solution exists.

Test for elliptical or hyperbolic motion:

T (a, O) = T'

r (a, O) = r'

(hyperbolic conic)

(elliptical conic)

Compute: a,, (0)

If: a < a,, (0),

If: a >__a,, (0)

If: 0 < rr,

If: 0 > r,

no solution exists

T (a, 0) = T

T(a,O) = T

T (a,O) : P- T

T (a,O) --- P -- T

(two solutions)

(two solutions)

Case II:

Given: T, 0(0<0<2r)

Find: a

For given values of T and 0, a unique a exists.

14
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If: 0 < rr

Consider:

Compute:

Compute:

Compute:

If:

If:

If:

If:

T, T, T', and T_ equations

a., (o)

T._ (0) = T [a,. (0)]

T_ (0)

T < T= (0),

W = T_ (0),

T_<T_Tm(O),

W > W,_ (0),

If: 8 > lr

Consider:

Compute:

Compute:

Compute:

If:

If:

If:

If:

P -- T. P -- T, T', and Too equations

a,. (0)

P -- T [a,,_ (0)] = P -Tm (0)

T_ (0)

W < T= (0),

T=T_,

T_ < W <P- V,.(O),

T > P - T,,,,

Case llh

Given: T, a

Find: 0

If: a < 0

Compute:

Compute:

Compute:

If:

If:

If:

T'(a,O)

T'_(a)

T'(a, 2_-)

T < T' (a, 0),

T' (a, 0) _ T < T' (a, 2,r),

T' (a, 2_-) <T_Z'(a,,r),

If: T > T' (a, ,r),

T(a, O) = T'

T(a, O) -- T_

T(a, O) = T

r(a, O) = T

T(a, O) = T'

T(a, 8) = T_

T(a.O)=P-T

T(a.O)=P- T

no solution exists

T(a,O) =T'

T(a,O) =T'

T(a,O) =T'

no solution exists

(hyperbolic conic)

(parabolic conic)

(elliptical conic)

(elliptical conic)

(hyperbolic conic)

(parabolic conic)

(elliptical conic)

(elliptical conic)

(hyperbolic conic)

(0 < _)

(o < ,_)

(o > _)

(two solutions )

15
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If: a > 0

Compute: am (0)

Compute: a._ (2 7r)

Compute: a Hohmann

Test for: 0 <

If: a < a,. (0),

If: a,. (0) < a < a Hohmann

Compute: %. (a), a = a,.

Compute: T ( a, O)

Compute: T (a, O)

If: T < T (a,O),

If: T (a, 0) < T < T,. (a),

If: Tm (a) < T < T (a.O),

If: T > T (a, 0),

If: a > a Hohmann

Compute: T (a,,r)

Compute: T (a, rr)

If: T< T(a,O),

If: T (a, 0) _ T _ T (a, ,_),

If: T(a,_) < T< T(a,_),
e_J

If: T (a,,_) < W < W (a, 0),

If: T > T(a, 0),

Test for: 0 ) _-

If: a < a,,, (2_),

If: a,,, (2.r) < a < a Hohmann

Compute: P - T., (a), a = am

Compute: P - T (a, 2r)

Compute: P - T (a, 2r)

If: T < P - T(a, 2.r),

If: P - _(a, 2r) < T < e - T,,, (a),

If: P - T,,, (a) < T < P - T (a, 2.r),

If: T)P-T(a, 2_),

no solution exists

no 0 < _r exists

T (a,O) = T

T (a,O) = T

no 0 < rr exists

no O < _rexists

T (a, 0) = T

no 0 _ 7r exists

T (a, 0) = T

no 0 _ _-exists

no 0 _ _r exists

no 0 _ _rexists

T (a, O) = P -- T

T(a,O) = P-- T

no 0 > r_ exists

(elliptical conic)

(0 < ,_)

(0

(0 <

(0 <

(0 >

(0 >

16
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If; a > a Hohmann
N

If: T < P - T (a, 2_r),

If: e - T (a, .%) _< r < T (a, ,_),

If: T (a, rr) < T < T(a, rr),

If: T(a, rr) < T < P - T (a, 2,r),

If: T > P- T (a, 2_),

no 0 > _rexists

T=P--T

no 0 > ,r exists

T(a, 0) = V- T

no 0 > 7r exists

(0 > ,_)

(0 > ,_)

APPENDIX A

Geometrical Properties of Elliptical Trajectories

Take two general points, P_ and P_, in the field of a

central gravitational force F, and let rl and r_ be the dis-

tances from F to P, and P._,, respectively. Let 0 be the

angle subtended by P_ and P_. (See Fig. A-1.)

Consider ellipses with semimajor axis a, with one focus

at F, which pass through P_ and P_. Let r'1 and r_ be the
distances from the vacant focus F' of such an ellipse to

P1 and P_, respectively. From the definition of an ellipse,

' =2ar 1 -_- r 1

and

r2 + r.', = 2a

F_ r.

Fig. A-1. Geometrical properties of elliptical

trajectories

so that

and

r == 2a -- rlr 1

' = '2a -- r2r 2

Construct circles of radii r_ r' (see Fig. A-l) about P1

and P._,,respectively, for

a<
r_ +rz +x/r_ -2r, r.,cos0 _ r_ +1".., +c

4 4

r, + r2 + c
12--

4

and

rl + r2 -_- C
a>

4

It may be seen that if

a<
r_ + rz + c

no F' exists, and hence no ellipse is defined. If

rl + r2 + C
a>

4

the circles intersect in, at most, two points, F_and F',, and
two possible ellipses are defined. In the special case
where

rl + r2 -{- C
a--

4

the circles intersect at one point, F', and one ellipse is
defined.

17
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APPENDIX B

Geometrical Properties of Hyperbolic Trajectories

Consider hyperbolas with semimajor axis a, with focus

at F, which pass through P1 and P_. Let r_ and r,_ be the

distances from the vacant focus F' of such a hyperbola

to P1 and P:, respectively. (See Fig. B-1.) From the defi-

nition of a hyperbola,

'--2a
rl -- r_

and

rz -- r"z = 2a
so that

r'1= rl - 2a
and

r_ --- rz -- 2a
Since a < 0,

r_ _> r_
and

r_ > r2

Construct circles of radius r_ and r" about Px and P_,

respectively. It may be seen that for any a, the circles

intersect at two and only two points, F'_ and F', so that

two hyperbolas are defined.

Fig. B-1. Geometrical properties of hyperbolic
trajectories

By allowing a to approach - oo, one can see that two

and only two parabolas are defined.
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